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Sampling Distributions of Esti Unbiased Esti

Definition of an Unbiased Estimator

e Let X = (Xi,..., Xn) be a random sample from a distribution that involves a
parameter (or parameter vector) 6 whose value is unknown.

e Suppose that we wish to estimate the parameter, 6, or a function of the
parameter, g(6).

e In a problem of this type, it is desirable to use an estimator §(X) that, with high
probability, will be close to 6 or g(6).

Suppose that X = (Xi, ..., X;) form a random sample from a normal distribution for
which the mean € is unknown and the variance is 1.

What is the M.L.E. of 6?
What does its distribution say about 67
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Definition of an Unbiased Estimator

Definition (Unbiased Estimator / Bias)

An estimator 6(X) is an unbiased estimator of a function g(0) of the parameter 6 if
Ey[6(X)] = g(0) for every possible value of 6.

An estimator that is not unbiased is called a biased estimator.

The difference between the expectation of an estimator and g(0) is called the bias of
the estimator. That is, the bias of § as an estimator of g(0) is Ey[6(X)] — g(6), and ¢ is
unbiased if and only if the bias is 0 for all 6.
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Definition of an Unbiased Estimator

Suppose that X = (Xi, ..., X») form a random sample from a normal distribution for
which the mean 6 is unknown and the variance o2 is unknown.

e Show that o’ = —L- 577 (X; — X,)? is an unbiased estimator of o2.

e Show that 52 =

~n

S7 . (Xi — Xn)? is a biased estimator of o2. Find a new
estimator, say 53 = g(c2), that is unbiased for o2.

Compute the variance of o’ and 2.
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Mean Squared Error

Definition (Mean Square Error)

Let ¢ be an estimator with finite variance. Then the mean square error (M.S.E.) of § as
an estimator of g(0) is defined by

Es [0 - g(0)].

o It can be shown that £, [(§ — g(6))?] = Var(s) + (Es[s] — 9(0))>.
e If § is an unbiased estimator of g(#), then the M.S.E. of ¢ is equal to its variance.

e Estimators with small M.S.E. are to be preferred.
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Mean Squared Error

Suppose that X = (Xi, ..., X;) form a random sample from a normal distribution for
which the mean @ is unknown and the variance o2 is unknown.
e Findthe M.S.E. of 0’® = 1= 327 (X — X)2.

e Findthe M.S.E. of 5 = 2 3°7 (X, — X»)?
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Limitations of Unbiased Estimators

e An unbiased estimator might not exist.
e The unbiased estimator might be inappropriate.

¢ Information from the experiment might be ignored in the search of an unbiased
estimator.

Let X be a random variable from the Poisson distribution with mean ), that describes
the number of incoming calls at a telephone switchboard per minute. It is of interest to
estimate the probability that no calls arrive in the next two minutes, this is, P(X = 0)2.
e Show that §(X) = (—1)* in an unbiased estimator for P(X = 0)2. Discuss how
appropriate this estimator can be.
e Show that §(X) = e~?¥ is a biased estimator for P(X = 0)2. Discuss how
appropriate this estimator can be.
It can be shown that the estimator e~2* has a smaller M.S.E. than (—1)*!
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