Classical and Bayesian inference

February 9, 2018

Claudia Wehrhahn (UCSC)

Classical and Bayesian inference

February 9, 2018 1 / 7

-

Definition of the Distributions

- We will introduce and discuss a particular class of gamma distributions, known as chi-square (χ^2) distributions.
- These are very important in statistical inference.

Example (The M.L.E. of the Variance of a Normal Distribution)

Suppose that X_1, \ldots, X_n for a random sample from the normal distribution with known mean μ and unknown variance σ^2 . The M.L.E. of σ^2 is given by

$$\widehat{\sigma_0^2} = \frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2.$$

• The distribution of $\widehat{\sigma_0^2}$ and $\widehat{\sigma_0^2}/\sigma^2$ are useful in several statistical problems.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Definition of the Distributions

Definition (χ^2 Distribution)

For each positive number *m*, the gamma distribution with parameters $\alpha = m/2$ and $\beta = 1/2$ is called the χ^2 distribution with *m* degrees of freedom and its p.d.f. is given by

$$f(x) = \frac{1}{2^{m/2}\Gamma(m/2)} x^{m/2-1} e^{-x/2}, \quad x > 0$$

- We are going to denote this distribution as χ²_m.
- It is common to restrict the degrees of freedom *m* to be an integer, but it is not necessary.
- Look plots in R.
- The χ^2 distribution with m = 2 is the exponential distribution with parameter 1/2.
- The following distributions are the same: the gamma distribution with parameters $\alpha = 1$ and $\beta = 1/2$, the χ^2 distribution with two degrees of freedom, and the exponential distribution for which the mean is 2.
- By definition, $\Gamma(1/2) = \sqrt{\pi}$.

Properties of the Distributions

Theorem (Mean and Varaince)

If a random variable X has the χ^2 distribution with m degrees of freedom, then E(X) = m and Var(X) = 2m.

• The moment generating function (m.g.f.) of X is

$$\Psi(t) = \left(\frac{1}{1-2t}\right)^{m/2}, \ t < 1/2.$$

Theorem (Mean and Varaince)

If the random variables X_1, \ldots, X_k are independent and if X_i has the χ^2 distribution with m_i degrees of freedom ($i = 1, \ldots, k$), then the sum $X_1 + \ldots + X_k$ has the χ^2 distribution with $m_1 + \ldots + m_k$ degrees of freedom.

Claudia Wehrhahn (UCSC)

-

・ロット (雪) (日) (日)

Properties of the Distributions

Theorem (Relationship between N(0, 1) and χ^2)

Let X have the standard normal distribution, i.e. $X \sim N(0, 1)$. Then the random variable $Y = X^2$ has the χ^2 distribution with one degree of freedom.

Proof:

Corollary

If the random variables X_1, \ldots, X_m are i.i.d. with the standard normal distribution, then the sum of squares X_1^2, \ldots, X_m^2 has the χ^2 distribution with m degrees of freedom.

Proof:

イロト イポト イヨト イヨト 二日

Example (Distribution of the M.L.E. of the Variance of a Normal Distribution)

Suppose that X_1, \ldots, X_n for a random sample from the normal distribution with known mean μ and unknown variance σ^2 . The M.L.E. of σ^2 is given by

$$\widehat{\sigma_0^2} = \frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2.$$

- Find the distribution of $\frac{n\sigma_0^2}{\sigma^2}$.
- Show that $\widehat{\sigma_0^2} \sim Gamma(n/2, n/(2\sigma^2))$.

3

・ロット (雪) (日) (日)