Classical and Bayesian inference

February 6, 2018

Claudia Wehrhahn (UCSC)

Classical and Bayesian inference

February 6, 2018 1 / 5

Example

Assume that X_1, \ldots, X_n form a random sample from the Bernoulli distribution with parameter θ , where each X_i describes if an iPhone is defective or not.

- Find, write, and plot the p.f. of $T = \sum_{i=1}^{n} X_i$ when n = 30.
- Find $P(T < 10 | \theta)$ and make a plot when n = 30.
- The distribution of *T* is called the *sampling distribution* of the statistic *T*.
- The distribution of *T* can help us to solve questions as: how close we expect *T* to be to θ before observing any data; determine how much will we learn about θ by observing *T*, ...

・ロン ・四マ ・ヨマ ・ヨマ

Definition (Sampling Distribution)

Suppose that the random variables $\mathbf{X} = (X_1, ..., X_n)$ form a random sample from a distribution involving a parameter θ whose value is unknown. Let T be a function of X and possibly θ . That is, $T = r(X_1, ..., X_n, \theta)$. The distribution of T (given θ) is called the *sampling distribution* of T. We will use the notation $E_{\theta}(T)$ to denote the mean of T calculated from its sampling distribution.

- The name "sampling distribution" comes from the fact that *T* depends on a random sample and so its distribution is derived from the distribution of the sample.
- When the random variable *T* does not depend on *θ*, it is a statistic, as previously defined.
- In principle, it is possible to derive the sampling distribution of each estimator of θ .

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Example

Consider that a large shipment of iPhone has arrive, and the proportion of defective iPhone, θ , is unknown. Assume that X_1, \ldots, X_{10} for a random sample from the Bernoulli distribution with parameter θ .

- Find the M.L.E of θ, θ
 , and an expression for P(| θ
 -θ |< 0.1 | θ).</p>
- Find Bayes estimate of θ , δ^* , and an expression for $P(|\delta^* \theta| < 0.1 | \theta)$, when $\theta \sim Beta(10, 10)$.
- Plot both functions.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Example (Sampling distribution of the M.L.E. of the mean of a normal distribution)

Consider a random sample X_1, \ldots, X_n from the normal distribution with mean μ and known variance σ^2 . Consider n = 30 and $\sigma^2 = 2$

- Find the sampling distribution of the M.L.E. of μ, μ̂. Find an expression for P(| μ̂ − μ | < 3 | μ).
- Find the sampling distribution of $\frac{\hat{\mu}-\mu}{\sqrt{\sigma^2/n}}$. Find an expression for computing $P(|\hat{\mu}-\mu|/\sqrt{\sigma^2/n} < 15)$.