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Estimation Maximum Likelihood Estimators

Introduction

• Here, we will develop a relatively simple method of constructing an estimator
without having to specify a loss function and a prior distribution.

• The maximum likelihood method was introduced by R. A. Fisher in 1912.

Some Terminology:
• Here, we are going to say that X1, . . . ,Xn form a random sample from a

distribution with p.d.f. or p.f. f (x | θ), where θ is unknown (not random!)
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Definition of the Maximum Likelihood Estimator

• Let X1, . . . ,Xn form a random sample from a distribution with p.f. or p.d.f.
f (x | θ). Recall that when x is observed, the likelihood function (the joint p.f. or
p.d.f.) is fn(x | θ).

• For each possible observed vector x , we will consider a value of θ for which the
likelihood function is a maximum and use this value as an estimate of θ.

Definition (Maximum Likelihood Estimator / Estimate)

For each possible observed vector x , let δ(x) ∈ Ω denote a value of θ ∈ Ω for which
the likelihood function fn(x | θ) is a maximum, and let θ̂ = δ(X ) be the estimator of θ
defined in this way. The estimator θ̂ is called a maximum likelihood estimator of θ.
After X = x is observed, the value δ(x) is called a maximum likelihood estimate of θ.
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Definition of the Maximum Likelihood Estimator

• The expressions maximum likelihood estimator and maximum likelihood
estimate are abbreviated M.L.E..

• The M.L.E. is required to be an element of the parameter space.

• The M.L.E. of θ might not exist.

• The M.L.E. of θ might not be unique.
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Examples

Example (Lifetime of a component)

Suppose that X1,X2, and X3 form a random sample from the exponential distribution
with rate θ. Suppose that X1 = 3, X2 = 1.5, and X3 = 2.1 are observed.
• Plot the likelihood function and its logarithm (See R).
• Find the M.L.E. for θ.

Example (Bernoulli sampling, discrete Ω)

Suppose that X follows Bernoulli distribution with probability of success θ. Suppose
Ω = {0.1, 0.9}. Find the M.L.E. of θ.
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Examples

Example (Uniform sampling)

Suppose that X1, . . . ,Xn form a random sample from a uniform distribution on the
interval [0, θ], where θ in unknown. Find the M.L.E. of θ.

Example (Normal sampling with known mean)

Suppose that X1, . . . ,Xn form a random sample from a Normal distribution with
unknown mean θ and known variance σ2. Find the M.L.E. of θ.
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Properties of the Maximum Likelihood Estimator
Invariance

• Suppose that X1, . . . ,Xn form a random sample from a distribution that has p.f.
or p.d.f. f (x | θ) and we find that the M.L.E for θ is θ̂. If we are interested in the
parameter Ψ = g(θ), is there a relationship between the M.L.E of θ and the
M.L.E. of Ψ?

Theorem (Invariance Property of the M.L.E.)

If θ̂ is the maximum likelihood estimator of θ and if g is a one-to-one function, then
g(θ̂) is the maximum likelihood estimator of g(θ).

Proof:

Example (Lifetime of a component)

Suppose that X1,X2, and X3 form a random sample from the exponential distribution
with rate θ. Find the M.L.E. of the mean of the random variables.
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Properties of the Maximum Likelihood Estimator
Invariance

Theorem (Invariance Property of the M.L.E.)

Let θ̂ be the maximum likelihood estimator of θ and let g(θ) be a function of θ, then a
maximum likelihood estimator of g(θ) is g(θ̂).

Example

Suppose that X1,X2, and X3 form a random sample from the Bernoulli distribution with
probability of success θ. Find the M.L.E. of the standard deviation of X .
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Properties of the Maximum Likelihood Estimator
Consistency

• Consider an estimation problem in which a random sample is to be taken from a
distribution involving a parameter θ.

• Suppose that for every sufficiently large sample size, n, there exists a unique
M.L.E. of θ.

• Then, under certain conditions, the sequence of M.L.E. converges in probability
to the unknown value of θ, as n→∞.

• So, under certain general conditions the sequence of Bayes estimators and the
sequence of M.L.E. will be very close to each other, and very close to the
unknown value of θ.
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