University of California, Santa Cruz Department of Applied Mathematics and Statistics Baskin School of Engineering Classical and Bayesian Inference - AMS 132

Homework 4

Instructions: You have until Friday, March 2, to complete the assignment. It has to be returned during 10 first minutes of class (4:55 pm to 5:05 pm) or between 1:00 pm and 3:00 pm in office BE 357B.

- 1. Suppose that X_1, \ldots, X_n form a random sample from the normal distribution with mean μ and variance σ^2 , and let $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i \overline{X}_n)^2$. Determine the smallest values of n for which the following relations are satisfied:
 - (a) $P\left(\frac{\hat{\sigma}^2}{\sigma^2} \le 1.9\right) \ge 0.95.$ Since $X_{\tau} \stackrel{iid}{=} N(\mu, \sigma^2)$ h

Since $X_i \stackrel{iid}{\sim} N(\mu, \sigma^2)$, by the theorem of joint distribution of the sample mean and sample variance, it follows that $Y = \sum_{i=1}^{n} \left(\frac{X_i - \overline{X}_n}{\sigma}\right)^2 \sim \chi^2_{(n-1)}$. Now

$$P\left(\frac{\widehat{\sigma}^2}{\sigma^2} \le 1.9\right) = P(\frac{Y}{n} \le 1.9) = P(Y \le 1.9n).$$

In order to $P(Y \le 1.9n) \ge 0.95$, we need to find n such that the 0.95 quantile of a $\chi^2_{(n-1)}$ is 1.9n. After trying different values of n, it follows that n = 5 is such that $P(Y \le 1.9 * 5) = 0.9502 \ge 0.95$, where $Y \sim \chi^2_{(4)}$.

(b) $P\left(\left| \hat{\sigma}^2 - \sigma^2 \right| \le \frac{1}{2}\sigma^2 \right) \ge 0.8.$ Since $X_i \stackrel{iid}{\sim} N(\mu, \sigma^2)$, by the theorem of joint distribution of the sample mean and sample variance, it follows that $Y = \sum_{i=1}^n \left(\frac{X_i - \overline{X}_n}{\sigma}\right)^2 \sim \chi^2_{(n-1)}$. Now

$$P\left(\mid \hat{\sigma_0}^2 - \sigma^2 \mid \le \frac{1}{2}\sigma^2\right) = P(-1/2 \le \sigma_0^2/\sigma^2 - 1 \le 1/2) = P(1/2 \le \sigma_0^2/\sigma^2 \le 3/2)$$
$$= P(n/2 \le Y \le 3n/2),$$

where $Y \sim \chi^2_{(n-1)}$. After trying different values for n, it follows that n = 13 is such that $P(n/2 \le Y \le 3n/2) = 0.8116 \ge 0.8$, where $Y \sim \chi^2_{(12)}$.

2. Suppose that the five random variables X_1, \ldots, X_5 are i.i.d. and that each has the standard normal distribution. Determine a constant *c* such that the random variable

$$\frac{c(X_1+X_2)}{(X_3^2+X_4^2+X_5^2)^{1/2}},$$

will have the t distribution.

Since X_1, \ldots, X_5 are i.i.d. random variables having the standard normal distribution, it follows that $X_1 + X_2 \sim N(0, 2)$, and $X_i^2 \sim \chi_{(1)}^2$, for i = 3, 4, 5, and they are independent. This implies that $\frac{X_1 + X_2}{\sqrt{2}} \sim N(0, 1)$ and $X_3^2 + X_4^2 + X_5^2 \sim \chi_{(3)}^2$, and they are independent. Finally, we get the t distribution

$$\frac{\frac{X_1+X_2}{\sqrt{2}}}{\sqrt{\frac{X_3^2+X_4^2+X_5^2}{3}}} = \sqrt{\frac{3}{2}} \frac{c(X_1+X_2)}{(X_3^2+X_4^2+X_5^2)^{1/2}} \sim t_{(3)}.$$

Therefore, the constant c is equal to $\sqrt{\frac{3}{2}}$.

Suppose that a random sample of eight observations is taken from the normal distribution with unknown mean μ and unknown variance σ², and that the observed values are 3.1, 3.5, 2.6, 3.4, 3.8, 3.0, 2.9, and 2.2. Find a confidence interval for μ with each of the following three confidence coefficients: (a) 0.90, (b) 0.95, and (c) 0.99. What effect has the confidence coefficient in the size of the interval?

Since the variance of the random variables is unknown, a coeffcient gamma confidence interval for μ is given by

$$\left(\overline{X}_n - T_{n-1}^{-1}\left(\frac{1+\gamma}{2}\right)\frac{\sigma'}{\sqrt{n}}, \overline{X}_n + T_{n-1}^{-1}\left(\frac{1+\gamma}{2}\right)\frac{\sigma'}{\sqrt{n}}\right).$$

From the data we have that $\overline{x}_n = 3.06$, n = 8, and $\sigma' = 0.5125$, also, $T_{n-1}^{-1}\left(\frac{1+0.9}{2}\right) = 1.8945$, $T_{n-1}^{-1}\left(\frac{1+0.95}{2}\right) = 2.36462$, $T_{n-1}^{-1}\left(\frac{1+0.99}{2}\right) = 3.4994$. Therefore, for $\gamma = 0.9$ the confidence interval is (2.80, 3.31), for $\gamma = 0.95$ the confidence interval is (2.75, 3.37), and for $\gamma = 0.99$ the confidence interval is (2.62, 3.49). Therefore, the larger the confidence coefficient, the longer the interval, this is, less precise it is.

4. Suppose that $X_1, ..., X_n$ form a random sample from the normal distribution with unknown mean μ and unknown variance σ^2 , and let the random variable L denote the length of the confidence interval for μ that can be constructed from the observed values in the sample. Find the value of $E(L^2)$ for the following values of the sample size n and the confidence coefficient γ :

First we will find $E(L^2)$. Since the variance of the random variables is unknown, the length of the interval is $L = 2T_{n-1}^{-1} \left(\frac{1+\gamma}{2}\right) \frac{\sigma'}{\sqrt{n}}$, so $L^2 = 4 \left[T_{n-1}^{-1} \left(\frac{1+\gamma}{2}\right)\right]^2 \frac{\sigma'^2}{n}$. To find $E(L^2)$ we need $E(\sigma'^2)$. For this, notice that $E\left(\sum (X_i - \overline{X}_n)^2 / \sigma^2\right) = n - 1$. This implies that

$$E(\sigma'^2) = E\left(\frac{\sum_{i=1}^n (X_i - \overline{X}_n)^2}{n-1}\right) = \frac{\sigma^2}{n-1} E\left(\sum (X_i - \overline{X}_n)^2 / \sigma^2\right) = \sigma^2.$$

Therefore,

$$E(L^{2}) = 4 \left[T_{n-1}^{-1} \left(\frac{1+\gamma}{2} \right) \right]^{2} \frac{E(\sigma'^{2})}{n} = 4 \left[T_{n-1}^{-1} \left(\frac{1+\gamma}{2} \right) \right]^{2} \frac{\sigma^{2}}{n}$$

• for $\gamma = 0.95$: use n = 5, n = 10, and n = 30. For fixed γ , what effect has n in the size of the interval?

For $\gamma = 0.95$, $E(L^2) = 6.16\sigma^2$ if n = 5, $E(L^2) = 2.04\sigma^2$ if n = 10, and $E(L^2) = 0.55\sigma^2$ if n = 30. So, for fixed γ coefficient, the confidence interval is more precise as the sample size increases.

For n = 8:, use γ = 0.90, γ = 0.95, and γ = 0.99. For fixed n, what effect has the confidence coefficient γ?
For n = 8, E(L²) = 1.79σ² if γ = 0.90, E(L²) = 2.79σ² if γ = 0.95, and E(L²) = 6.12σ² if γ = 0.99. So, for fixed sample size n, the confidence interval is less precise as the coefficient γ increases.

Note: $E(L^2)$ will be a function of σ^2 . For solving the exercise: first find L and show that $L^2 = 4c^2\sigma'^2/n$, where $\sigma'^2 = \sum (X_i - \overline{X}_n)^2/(n-1)$. Second, note that $W = \sum (X_i - \overline{X}_n)^2/\sigma^2$ has a χ square distribution with n-1 degrees of freedom, whose mean is n-1.

5. Suppose that X₁,..., X_n form a random sample from the exponential distribution with unknown mean μ. Find a 90 percent confidence interval for μ. Use γ₁ = 0.05 and γ₂ = 0.95 Note: use the facts that: if X ~ exp(λ), then ∑_{i=1}ⁿ X_i ~ Gamma(n, λ). If X ~ Gamma(a, b), then 2Xb ~ χ²_(2a). Then, show that ^{2∑_{i=1} X_i}/_μ is a pivot quantity.

Since $X \sim exp(1/\mu)$, then $\sum_{i=1}^{n} X_i \sim Gamma(n, 1/\mu)$. Now, since $\sum_{i=1}^{n} X_i \sim Gamma(n, 1/\mu)$, then $\frac{2\sum_{i=1}^{n} X_i}{\mu} \sim \chi_{2n}^2$. Therefore, $\frac{2\sum_{i=1}^{n} X_i}{\mu}$ is a function of the random variables and the parameter μ that has a distribution that is the same for every μ , so it is a pivot. Now, for finding the confidence interval we start from $P\left(G^{-1}(\gamma_1) < \frac{2\sum_{i=1}^{n} X_i}{\mu} < G^{-1}(\gamma_2)\right) = \gamma$, where $G^{-1}(\gamma)$ is the γ quantile of a χ^2 distribution with 2n degrees of freedom, and find random variables A and B such that $P(A < \mu < B) = \gamma$. Note that

$$P\left(G^{-1}(\gamma_1) < \frac{2\sum_{i=1}^n X_i}{\mu} < G^{-1}(\gamma_2)\right) = \gamma$$

is equivalent to

$$P\left(\frac{1}{G^{-1}(\gamma_1)} > \frac{\mu}{2\sum_{i=1}^n X_i} > \frac{1}{G^{-1}(\gamma_2)}\right) = \gamma$$

, which is equivalent to $P\left(\frac{2\sum_{i=1}^{n}X_i}{G^{-1}(\gamma_2)} < \mu < \frac{2\sum_{i=1}^{n}X_i}{G^{-1}(\gamma_1)}\right) = \gamma$. Therefore, the coefficient γ confidence interval for μ is given by (A, B), where $A = \frac{2\sum_{i=1}^{n}X_i}{G^{-1}(\gamma_2)}$ and $B = \frac{2\sum_{i=1}^{n}X_i}{G^{-1}(\gamma_1)}$, where $\gamma_1 = 0.05$ and $\gamma_2 = 0.95$.

In the June 1986 issue of *Consumer Reports*, some data on the calorie content of beef hot dogs is given. Here are the numbers of calories in 20 different hot dog brands: 186, 181, 176, 149, 184, 190, 158, 139, 175, 148, 152, 111, 141, 153, 190, 157, 131, 149, 135, 132.

Assume that these numbers are the observed values from a random sample of twenty independent normal random variables with mean μ and variance σ^2 , both unknown. Find a 90% confidence interval for the mean number of calories μ .

Since the variance is unknown the confidence interval is

$$\left(\overline{X}_n - T_{n-1}^{-1}\left(\frac{1+\gamma}{2}\right)\frac{\sigma'}{\sqrt{n}}, \overline{X}_n + T_{n-1}^{-1}\left(\frac{1+\gamma}{2}\right)\frac{\sigma'}{\sqrt{n}}\right).$$

From the data we have that $\overline{x}_n = 156.85$, n = 20, $\sigma' = 22.6420$, and $T_{n-1}^{-1}\left(\frac{1+\gamma}{2}\right) = 1.72913$, so the confidence interval is (148.0956, 165.6044). So we can say that with a 90% confidence the mean calories in hot dogs is between 148.0956 and 165.6044.

- 7. Consider the problem and data from exercise 6, but now assume that the variance is known and equal to 510.
 - (a) Find a 90% confidence interval for the mean number of calories μ . You can use the result of exercise 1 in section 8.5 from the textbook (a confidence interval in this case was also solved in discussion section).

Since the variance of the random variables is known, a 90% confidence interval for the mean number of calories μ is given by

$$\left(\overline{X}_n - \Phi^{-1}\left(\frac{1+\gamma}{2}\right)\frac{\sigma'}{\sqrt{n}}, \overline{X}_n + \Phi^{-1}\left(\frac{1+\gamma}{2}\right)\frac{\sigma'}{\sqrt{n}}\right).$$

So, from the information in exercise 6, the observed value of the interval is (148.5439, 165.1561). Note that this interval has a smaller length than the one from exercise 6. This is because now the variance is known, there is less uncertainty.

(b) Now, assume that μ has a normal prior distribution with mean 0 and variance 10000. Find the posterior distribution of μ and compute the probability that the posterior distribution of μ lies between the confidence interval computed in a).

Here we are assuming that $\mu \sim N(0, 10000)$ and $X_i \sim N(\mu, 510)$, so from the theorem of conjugate prior distributions, it follows that the posterior distribution of μ is normal with mean equal to $\mu_1 = \frac{10000n\overline{x}_n}{510+10000n}$ and variance $V_1^2 = \frac{510*10000}{510+10000n}$. The probability that the posterior distribution of μ lies between the confidence interval computed in a) is

$$P(148.5439 < \mu < 165.1561 \mid \boldsymbol{x}) = P(\mu < 165.1561 \mid \boldsymbol{x}) - P(\mu < 148.5439 \mid \boldsymbol{x}) = 0.899372,$$

where $\mu \mid x \sim N(\mu_1, v_1^2)$.

```
mul <- (20*10000*mean(x))/(510+20*10000)
vl2 <- (510*10000)/(510+20*10000)
pnorm(165.1561, mul, sqrt(vl2))- pnorm(148.5439, mul, sqrt(vl2))</pre>
```

So under the prior $\mu \sim N(0, 10000)$ the posterior probability of μ being inside the confidence interval is very close to the confidence coefficient, 90%. This is because, this prior has a very large variance.

(c) What kind of prior distribution was considered in b)?

The prior distribution considered in b) is a conjugate prior distribution.