
University of California, Santa Cruz
Department of Applied Mathematics and Statistics
Baskin School of Engineering
Classical and Bayesian Inference - AMS 132

Homework 2

Instructions: You have until Friday, February 2, to complete the assignment. It has to be returned
during 10 last minutes of class (4:55 pm to 5:05 pm) or between 1:00 pm and 3:00 pm in office BE 357B.

This homework includes a BONUS exercise. The score in that exercise can replace the score of ANY
other exercise you choose, in this or another homework .

1. Suppose that the number of defects in a 1200-foot roll of magnetic recording tape has a Poisson
distribution for which the value of the mean θ is unknown, and the prior distribution of θ is the
gamma distribution with parameters α and β. [15 pts.]

(a) Show that the posterior mean is a weighted average of the prior mean and the sample mean, with
weights denoted by γn, this means, the posterior mean can be written as γnE(θ) + (1− γn)Xn,
where Xn =

∑n
i=1 Xi/n and show that γn → 0 as the sample size increases, this is, as n→∞.

[3 pts.]
Since the gamma prior is conjugate for Poisson sampling, we have that θ | x ∼ Gamma(α +∑n

i=1 xi, β + n), and the posterior mean is given by

E(θ | x) =
α +

∑n
i=1 xi

β + n
=

β

β + n

α

β
+

(
1− β

β + n

)
xn = γnE(θ) + (1− γn)xn.

Finally, limn→∞ γn = limn→∞
β

β+n
= 0, this is, γn → 0 as n→∞.

(b) Considering the square error loss function, find Bayes estimator for θ, and show that they form
a consistent sequence of estimators of θ. [3 pts.]
We have to show that Bayes estimator converges in probability to θ as n→∞.
By the law of large number we know thatXn converges in probability to E(X) = θ, as n→∞.
Now, under square error loss function Bayes estimator is the posterior mean, so, by (a) it follows
that

δ?(X) =
α +

∑n
i=1Xi

β + n
= γnE(θ) + (1− γn)Xn.

Since γn → 0 and Xn converges in probability to θ, as n→∞, it follows that Bayes estimator
converges in probability to θ.

(c) If the prior mean and prior variance are equal to 3, find the values of the parameters of the prior
distribution. [3 pts.]
Solving E(θ) = α/β = 3 and V ar(θ) = αβ2 = 3, it follows that α = 3 and β = 1.
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(d) When five rolls of this tape are selected at random and inspected, the numbers of defects found
on the rolls are 2, 2, 6, 0, and 3. Find Bayes estimate for θ under square error loss. [3 pts.]
We have that α = 3, β = 1, n = 5, and

∑5
i=1 xi = 13, therefore, by (b) we get that δ?(x) =

3+13
1+5

= 16
6
.

(e) Find Bayes estimate for the probability of a 1200-foot roll of magnetic recording tape having no
defects. [3 pts.]
Note that what we want to estimate is P (X = 0) = e−θθ0/0! = eθ. So we want to estimate
parameter Ψ = h(θ) = e−θ, which under square error loss is the posterior mean. So,

δ?(Ψ) = E(e−θ | x) =

∫ ∞
0

e−θξ(θ | x)dθ =

∫ ∞
0

e−θ
(β + n)α+

∑n
i=1 xi

Γ(α +
∑n

i=1 xi)
θα+

∑n
i=1 xi−1e−(β+n)θ

=

(
β + n

β + n+ 1

)α+
∑n

i=1 xi

=
6

7

14

.

2. Suppose that X1, . . . , Xn form a random sample from an exponential distribution for which the value
of the parameter θ is unknown. [15 pts.]

(a) Determine the maximum likelihood estimator and estimate of θ. [5 pts.]
The likelihood function is fn(x mod θ) = θne−θ

∑n
i=1 xi . Its logarithm is L(θ) = n log(θ) −

θ
∑n

i=1 xi. Now we find the value of θ that maximizes L(θ):

d

dθ
L(θ) =

n

θ
−

n∑
i=1

xi = 0⇒ θ =
n∑n
i=1 xi

.

Now we check that that value of θ is a maximum: d2

dθ2
L(θ) = − n

θ2
< 0, for all θ. Therefore,

θ̂ = n∑n
i=1Xi

is the maximum likelihood estimator and θ̂ = n∑n
i=1 xi

is the maximum likelihood
estimate.

(b) Determine the maximum likelihood estimator and estimate of the probability of observing a
value equal or smaller than x0, where x0 > 0. [5 pts.]
Note that we need to estimate g(θ) = P (X ≤ x0) =

∫ x0
0
θe−θxdx = −e−θx|x00 = 1 − e−θx0 .

By the invariance property of the M.L.E. we get that the maximum likelihood estimator of
P (X ≤ x0) is g(θ̂) = 1 − e−θ̂x0 = 1 − e−nx0/

∑n
i=1Xi and the maximum likelihood estimate is

g(θ̂) = 1− e−nx0/
∑n

i=1 xi .

(c) Determine the maximum likelihood estimator and estimate of the median of the distribution. [5
pts.]
We know that the median, say m, for a continuous random variable is P (X ≤ m) = 0.5.
Then, by (b), it follows that the median is found by solving 1 − e−θm = 0.5, therefore m =

−log(0.5)/θ = log(2)/θ and the maximum likelihood estimator of the median is m = g(θ̂) =

log(2)/θ̂ = log(2)
∑n

i=1 Xi/n. The maximum likelihood estimate of the median is m = g(θ̂) =

log(2)
∑n

i=1 xi/n
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3. Suppose that X1, . . . , Xn form a random sample from a gamma distribution with parameters a and
θ, where a is known and θ is unknown. It is known that θ can only be 1, or 2, or 3, and a = 3. Six
random variables are observed to be 0.5, 0.8, 1.2, 0.3, 1.4, 0.2. [15 pts.]

(a) Write the statistical model. [4 pts.]
Let X be the random variable of interest. The p.d.f. is f(x | θ) = θa

Γ(a)
xa−1e−θx, θ ∈ Ω, where

Ω = {1, 2, 3}.

(b) Plot the likelihood function and plot the logarithm of the likelihood function. [4 pts.]
We have that n = 6,

∑6
i=1 xi = 4.4, a = 3, and

∏n
i=1 x

a−1
i = 0.0016. So the likelihood function

and its logarithm are

fn(x | θ) =
θna

Γ(a)n

n∏
i=1

xa−1
i e−θ

∑n
i=1 xi =

θ18

64
× 0.0016e−4.4θ,

L(θ) = na log(θ)− n log(Γ(a)) + (a− 1)
n∑
i=1

log(xi)− θ
n∑
i=1

xi,

= 18 log(θ)− 6 log(2) + 2(−3.2109)− 4.4θ.

[Figure 1 about here.]

(c) Find the maximum likelihood estimator and estimate of θ. [3 pts.]
From the plot is easy to see that the likelihood function (and its logarithm) is maximized when
θ = 3. So θ̂ = 3 is the M.L.E.

(d) Find the maximum likelihood estimator and estimate of 2θ + 8. [4 pts.]
Since we are interested in the M.L.E. of g(θ) = 2θ + 8it follows that g(θ̂) = 2 ∗ 3 + 8 = 14.

4. Suppose that X1, . . . , Xn form a random sample from a gamma distribution with parameters a and θ,
where a is known and θ is unknown. Suppose that a discrete prior for θ is assumed, where ξ(1) = 0.3,
ξ(2) = 0.5, and ξ(3) = 0.2. Six random variables are observed to be 0.5, 0.8, 1.2, 0.3, 1.4, 0.2. [15
pts.]

(a) Find the posterior distribution of θ. [4 pts.]
From the definition of posterior distribution and exercise 4 we have that

ξ(θ | x) =
fn(x | θ)ξ(θ)∑

θ∈{1,2,3} fn(x | θ)ξ(θ)
=

θ18

64
× 0.0016e−4.4θξ(θ)∑

θ∈{1,2,3}
θ18

64
× 0.0016e−4.4θξ(θ)

=
θ18

64
× 0.0016e−4.4θξ(θ)

0.0041
.

Therefore, the posterior distribution is given by

ξ(1 | x) =
118

64
× 0.0016e−4.4∗1 × 0.3

0.0041
= 0.0000225,

ξ(2 | x) =
218

64
× 0.0016e−4.4∗2 × 0.5

0.0041
= 0.1210,

ξ(3 | x) = 1− ξ(1 | x)− ξ(1 | x) = 0.8789.
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(b) Find Bayes estimate under absolute error loss function. [4 pts.]
Under absolute error loss function Bayes estimate is the median. For discrete random variables,
the median, say m, is given by P (θ ≤ m) ≥ 0.5 and P (θ ≥ m) ≥ 0.5. From the posterior
distribution of θ given in (a), we have that Bayes estimate is δ?(x) = 3.

(c) Find Bayes estimate under square error loss function. [4 pts.]
Under square error loss function Bayes estimate is the posterior mean, therefore

δ?(x) = E(θ | x) =
∑

θ∈{1,2,}

θξ(θ | x) = 1 ∗ 0.0000225 + 2 ∗ 0.1210 + 3 ∗ 0.8789 = 2.878723.

(d) Find Bayes estimate for Ψ = 2θ + 8 under square error loss function. [3 pts.]
Under square error loss function Bayes estimate is the posterior mean, therefore

δ?(x) = E(Ψ | x) = E(2θ + 8 | x) = 2E(θ | x) + 8 = 13.75745.

5. (Bonus exercise): Find the distribution of a new observation given and observed sample of size n,
X1 = x1, . . . , Xn = xn, for the following models: [15 pts.]

• X1, . . . , Xn form a random sample from the Bernoulli distribution with parameter θ, and θ has
a beta prior distribution with parameters α > 0 and β > 0. [4 pts.]
Since the beta prior is conjugate for Bernoulli sampling, it follows that

θ | x ∼ Beta(α +
n∑
i=1

xi, β + n−
n∑
i=1

xi).

The p.d.f. of a new observation given x is given by

f(xn+1 | x) =

∫ 1

0

θxn+1(1− θ)1−xn+1ξ(θ | x)dθ,

=
Γ(α +

∑n
i=1 xi + xn+1)Γ(β + n−

∑n
i=1 xi − xn+1 + 1)Γ(α + β + n)

Γ(α +
∑n

i=1 xi)Γ(β + n−
∑n

i=1 xi)Γ(α + β + n+ 1)
.

• X1, . . . , Xn form a random sample from the Poisson distribution with parameter θ, and θ has a
gamma prior distribution with parameters α > 0 and β > 0. [4 pts.]
Since the gamma prior is conjugate for Poisson sampling, it follows that

θ | x ∼ Gamma(α +
n∑
i=1

xi, β + n).

The p.d.f. of a new observation given x is given by

f(xn+1 | x) =

∫ ∞
0

e−θθxn+1

xn+1!
ξ(θ | x)dθ,

=
(β + n)α+

∑n
i=1 xiΓ(α +

∑n
i=1 xi + xn+1)

(β + n+ 1)α+
∑n

i=1 xi+xn+1Γ(α +
∑n

i=1 xi)xn+1!
.
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• X1, . . . , Xn form a random sample from the Normal distribution with unknown mean θ and
known variance σ2 > 0, and θ has a normal prior distribution with mean µ0 and variance v2

0 . [3
pts.]
Since the normal prior is conjugate for normal sampling with known variance, it follows that

θ | x ∼ Normal(µ1, v
2
1),

where µ1 =
σ2µ0+nv20xn
σ2+nv20

, and v2
1 =

σ2v20
σ2+nv20

. The p.d.f. of a new observation given x is given by

f(xn+1 | x) =

∫ ∞
0

1√
2πv2

1

exp

{
− 1

2v2
1

(θ − µ1)2

}
ξ(θ | x)dθ,

=
1√

2π(σ2 + v2
1)

exp

{
− 1

2(σ2 + v2
1)

(θ − µ1)2

}
.

• X1, . . . , Xn form a random sample from the exponential distribution with parameter θ, and θ
has a gamma prior distribution with parameters α > 0 and β > 0. [4 pts.]
Since the gamma prior is conjugate for exponential sampling, it follows that

θ | x ∼ Gamma(α + n, β +
n∑
i=1

xi).

The p.d.f. of a new observation given x is given by

f(xn+1 | x) =

∫ ∞
0

θe−θxn+1ξ(θ | x)dθ,

=
(α + n)(β +

∑n
i=1 xi)

α+n

(β +
∑n

i=1 xi + xn+1)α+n+1
.
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