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Sampling Distributions of Estimators Fisher Information

Definition and Properties of Fisher Information

• The Fisher information is one property of a distribution that can be used to
measure how much information one is likely to obtain from a random variable or
a random sample.

• Also, the Fisher information allows to lower bound the variance of an estimator.
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Sampling Distributions of Estimators Fisher Information

Definition and Properties of Fisher Information

Definition (Fisher Information in a Random Variable)

Let X be a random variable whose distribution depends on a parameter θ and let the
p.f. or p.d.f. of X be f (x | θ). Assume that
• θ takes values in an open interval of the real line,
• the set of x such that f (x | θ) > 0 is the same for all θ,
• λ(x | θ) = log f (x | θ) is twice differentiable as a function of θ.

Then, the Fisher information I(θ) in the random variable X is defined as

I(θ) = Eθ

{[
d
dθ
λ(X | θ)

]2
}
.

• If, additionally, the two derivatives of f (x | θ) with respect to θ can be calculated
by reversing the order of integration and differentiation, then the Fisher
information also equals

I(θ) = −Eθ
[

d2

dθ2 λ(X | θ)

]
= Varθ

[
d
dθ
λ(X | θ)

]
.
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Sampling Distributions of Estimators Fisher Information

Definition and Properties of Fisher Information

Example

a) Suppose that X has the Bernoulli distribution with parameter p. Determine the
Fisher information I(p) in X .

b) Suppose that X has the normal distribution with unknown mean µ and known
variance σ2. Determine the Fisher information I(µ) in X .
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Sampling Distributions of Estimators Fisher Information

Definition and Properties of Fisher Information

• There is a simple relation between the Fisher information In(θ) in the entire
sample and the Fisher information I(θ) in a single observation Xi .

Theorem (The Fisher Information in a Random Sample)

Under the conditions of the definition of I(θ),

In(θ) = nI(θ).

• So, the Fisher information in a random sample of n observations is simply n
times the Fisher information in a single observation.
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Sampling Distributions of Estimators Fisher Information

Definition and Properties of Fisher Information

Example (Customer arrivals)

A store owner is interested in learning about customer arrivals. She models arrivals
during an hour as a Poisson process with unknown rate λ. She thinks of two different
possible sampling plans to obtain information about customer arrivals:

a) One plan is to choose a fixed number, n, of customers and to see how long, X , it
takes until n customers arrive.

b) The other plan is to observe for a fixed length of time, t , and count how many
customers, Y , arrive during time t .

Discuss which sampling plan provides more information.
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Sampling Distributions of Estimators Fisher Information

Efficient estimators

• We will show how to use the Fisher information to determine a lower bound for
the variance of an unbiased estimator of the parameter θ in a given problem.

Corollary (Cramér-Rao Lower bound of the Variance of an Unbiased Estimator)

Assume the conditions of the definition of I(θ). Let T be an unbiased estimator of θ.
Then

Varθ(T ) ≥ 1
nI(θ)

.
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Sampling Distributions of Estimators Fisher Information

Efficient estimators

• An estimator whose variance equals the Cramér-Rao lower bound makes the
most efficient use of the data in some sense.

Definition (Efficient Estimator)

It is said that an unbiased estimator, T , is an efficient estimator of θ if, for every value
of θ ∈ Ω,

Varθ(T ) =
1

nI(θ)
.

• In some problems, efficient estimators do not exist.
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Sampling Distributions of Estimators Fisher Information

Efficient estimators

Example

a) Suppose that X1, . . . ,Xn form a random sample from the Bernoulli distribution
with parameter p. Show that X n is an efficient estimator for p.

b) Suppose that X1, . . . ,Xn form a random sample from the normal distribution with
unknown mean µ and known variance σ2. Show that X n is an efficient estimator
for µ.

• The results for finding a lower bound for an unbiased estimator or an efficient
estimator can be extended for any estimator that has mean m(θ). In this case
Varθ(T ) ≥ [m′(θ)]2

nI(θ) , and T is efficient when Varθ(T ) = [m′(θ)]2

nI(θ) .
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Sampling Distributions of Estimators Fisher Information

Properties of Maximum Likelihood Estimators for
Large Samples

Theorem (Asymptotic Distribution of the M.L.E.)

Assume that X1, . . . ,Xn form a random sample from a distribution that has p.f. of p.d.f.
f (x | θ). Assume the conditions of the definition of I(θ) are satisfied. Let θ̂n denote the
M.L.E. of θ. Then, if n is large, the distribution of θ̂n is approximately normal with mean
θ and variance 1

nI(θ) , this is,

[nI(θ)]1/2(θ̂n − θ)

has a standard normal distribution.
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Sampling Distributions of Estimators Fisher Information

Properties of Maximum Likelihood Estimators for
Large Samples

Example

Suppose that X1, . . . ,Xn form a random sample from the Bernoulli distribution with
parameter p.

a) Find the asymptotic distribution of the M.L.E. of p.
b) Use the above results for finding an approximate 95% confidence interval for p.
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