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Estimation Conjugate Prior Distributions

Sampling from a Bernoulli Distribution

Theorem (Beta-Bernoulli model)

Suppose that X1, . . . ,Xn form a random sample from the Bernoulli distribution with
parameter θ, which is unknown (0 < θ < 1). Suppose also that the prior distribution of
θ is the beta distribution with parameters α > 0 and β > 0. Then the posterior
distribution of θ given that Xi = xi , (i = 1, ..., n), is the beta distribution with parameters
α +

∑n
i=1 xi and β + n −

∑n
i=1 xi .

Example (Beta-Bernoulli model)

Consider a large shipment of iPhone has arrive, and the proportion of defective
iPhone, θ, is unknown. A Beta(α, β) prior is assumed and n randomly selected items
are inspected.

a) Find the posterior distribution of θ.
b) How is the posterior distribution updated?
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Estimation Conjugate Prior Distributions

Sampling from a Bernoulli Distribution

Definition (Conjugate Family and Hyperparameters)

Let X1,X2, . . . be conditionally i.i.d. given θ with common p.f. or p.d.f. f (x | θ). Let Ψ
be a family of possible distributions over the parameter space Ω. Suppose that, no
matter which prior distribution ξ we choose from Ψ, no matter how many observations
X = (X1, . . . ,Xn) we observe, and no matter what are their observed values
x = (x1, . . . , xn), the posterior distribution ξ(θ | x) is a member of Ψ. Then Ψ is called
a conjugate family of prior distributions for samples from the distributions f (x | θ). It is
also said that the family Ψ is closed under sampling from the distributions f (x | θ).

Finally, if the distributions in Ψ are parametrized by further parameters, then the
associated parameters for the prior distribution are called the prior hyperparameters
and the associated parameters of the posterior distribution are called the posterior
hyperparameters.
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Estimation Conjugate Prior Distributions

Sampling from a Poisson Distribution

Theorem (Gamma-Poisson model)

Suppose that X1, . . . ,Xn form a random sample from the Poisson distribution with
mean θ > 0, which is unknown. Suppose also that the prior distribution of θ is the
gamma distribution with parameters α > 0 and β > 0. Then the posterior distribution
of θ given that Xi = xi , (i = 1, ..., n), is the gamma distribution with parameters
α +

∑n
i=1 xi and β + n.

Example (Gamma-Poisson model)

Suppose that customers arrive to a store at an unknown rate, θ, per hour. Assume
that θ follows a gamma distribution with parameters α and β.

a) Find the posterior distribution of θ.
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Estimation Conjugate Prior Distributions

Sampling from a Normal Distribution

Theorem (Normal-Normal model)

Suppose that X1, . . . ,Xn form a random sample from the Normal distribution with
unknown mean θ and known variance σ2 > 0. Suppose also that the prior distribution
of θ is the normal distribution with mean µ0 and variance v2

0 . Then the posterior
distribution of θ given that Xi = xi , (i = 1, ..., n), is the normal distribution with mean
and variance given by

µ1 =
σ2µ0 + nv2

0 xn

σ2 + nv2
0

, v2
1 =

σ2v2
0

σ2 + nv2
0
.
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Estimation Conjugate Prior Distributions

Sampling from a Normal Distribution

Example (Normal-Normal model)

Suppose that Xi | θ, σ2 i.i.d.∼ N(θ, σ2), with σ2known. Assume that θ follows a normal
distribution with parameters µ0 and v2

0 .
a) Find the posterior distribution of θ.
b) Show that the posterior mean can be written as

µ1 =
σ2

σ2 + nv2
0
µ0 +

nv2
0

σ2 + nv2
0

xn.

c) Find an expression for computing P(θ > 1 | x).
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Estimation Conjugate Prior Distributions

Sampling from a Exponential Distribution

Theorem (Gamma-Exponential model)

Suppose that X1, . . . ,Xn form a random sample from the exponential distribution with
unknown parameter θ > 0. Suppose also that the prior distribution of θ is the gamma
distribution with parameters α > 0 and β > 0. Then the posterior distribution of θ
given that Xi = xi , (i = 1, ..., n), is the gamma distribution with parameters α + n and
β +

∑n
i=1 xi .

Example (Gamma-Exponential model)

Suppose that Xi | θ
i.i.d.∼ exp(θ), i = 1, . . . , n, θ > 0, where Xi describes the lifetime of

component i , and θ ∼ Gamma(α, β).
a) Find the posterior distribution of θ.
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Estimation Conjugate Prior Distributions

Improper Prior Distributions

• Recall that improper priors capture the idea that there is much more information
in the data than is capture in our prior distribution.

• Each of the conjugate families that we have seen has an improper prior as a
limiting case.

Definition

Let ξ be a nonnegative function whose domain includes the parameter space of a
statistical model. Suppose that

∫
Ω
ξ(θ)dθ =∞. If we pretend as if ξ(θ) is the prior

p.d.f. of θ, then we are using an improper prior for θ.
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Estimation Conjugate Prior Distributions

Improper Prior Distributions

Example (Improper Prior Distributions)

a) Consider a large shipment of iPhone has arrive, and the proportion of defective
iPhone, θ, is unknown. A Beta(α, β) prior is assumed and n randomly selected
items are inspected. What happens when α = β = 0?

b) Suppose that customers arrive to a store at an unknown rate, θ, per hour.
Assume that θ follows a gamma distribution with parameters α and β. What
happens when α = β = 0? What happens if no customers arrive in an hour?

c) Suppose that Xi | θ, σ2 i.i.d.∼ N(θ, σ2), with σ2known. Assume that θ follows a
normal distribution with parameters µ0 and v2

0 . What happens if v2
0 =∞?
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